

Duct Leakage Testing

Ken Helpers, TSI Inc.

Agenda

- Need for duct leakage testing
- Duct leakage testing standards and regulations
- Performing duct leakage testing

Why Test Ducts for Leakage?

- Conserve energy
 - 10-30% of heated/cooled air lost through ductwork
 - Leaky supply ducts don't deliver air where needed
 - Leaky return ducts add load

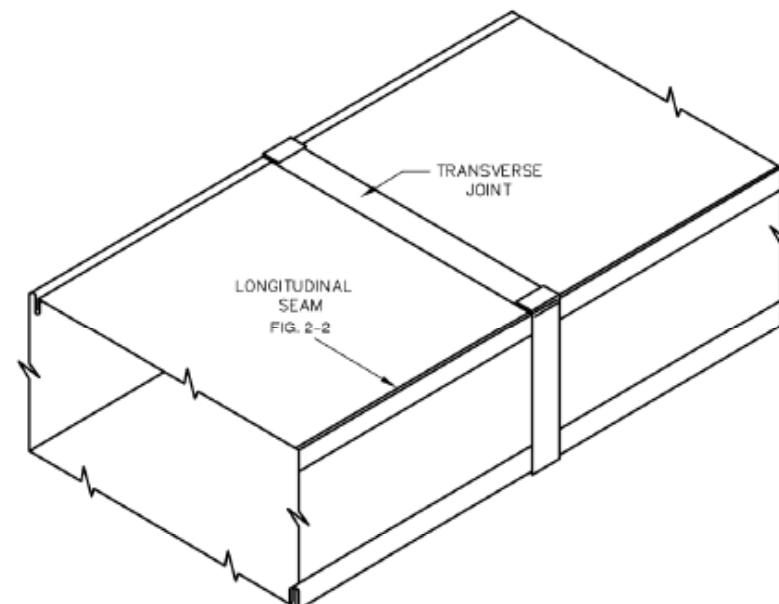
Why Test Ducts for Leakage?

- Indoor Air Quality
 - Leaky returns can pull in air from uncontrolled spaces, causing
 - Humidity problems
 - Contaminants

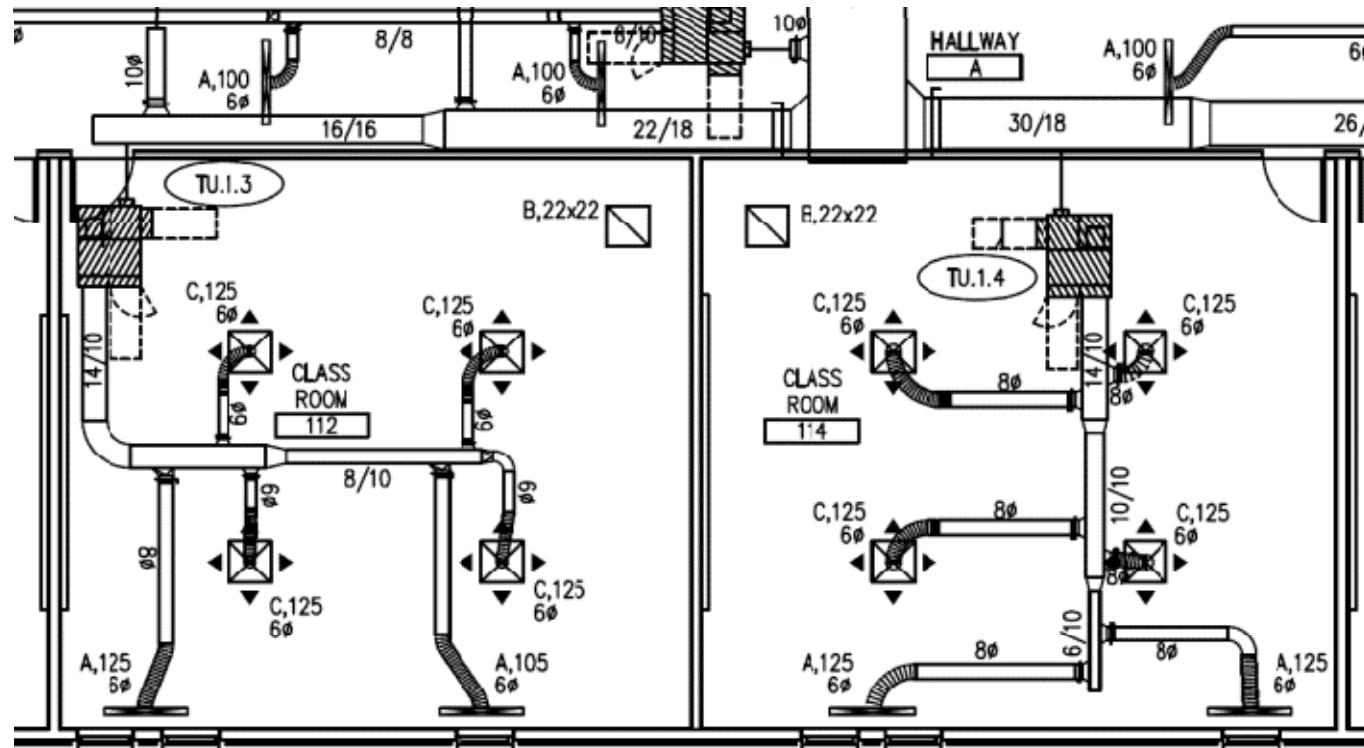
System Leakage

- IAQ, Comfort, Energy issues caused by leakage from HVAC System
- System Leakage = Duct Leakage + Equipment Leakage + Accessory Leakage
- Scope of presentation = Duct leakage
 - Does not include:
 - Leakage through Equipment (See ASHRAE 193)
 - Leakage through Accessories
 - Commercial & industrial systems
 - Similar concepts for residential

Why Test Ducts for Leakage?



- Requirements
 - US
 - SMACNA HVAC Air Duct Leakage Test manual, First edition, 1985
 - ASHRAE 90.1 (Proposed)
 - Project specifications
 - California Title 24 → residential testing required if ahu/furnace in garage or ducts in non-conditioned space (attic)
 - Europe
 - BS EN 12237:2003 – Circular Ductwork
 - BS EN 1507:2006 – Rectangular Ductwork
 - DW/143 (HVAC—A practical guide to Ductwork leakage testing)
 - Eurovent 2/2 (Air leakage rate in sheet metal air distribution systems)


Where Does Duct Leakage Occur?

- Transverse Joint
 - Duct-to-duct, -branch, -tap, etc.
- Longitudinal Seam
 - Joining of 2 edges in direction of airflow
- Penetration
 - Rod, wire, tubing, etc.
- Sealing not required:
 - Spiral seams
 - Screws & fasteners
 - Damper rods

Where Does Duct Leakage Occur?

- Higher-pressure ductwork
 - ASHRAE 90.1 recommends only testing ductwork rated >3 in H_2O
 - Don't test flex duct

How to Test Duct Leakage (Basic)

- Identify ductwork section to be tested
 - Calculated surface area
- Seal ductwork
- Pressurize ductwork to specified level
- Measure flow required to maintain duct pressure
- Compare to standards

Duct Leakage Measurements

- % of Flow requirements
 - Problem: Disregards size of ductwork & static pressure
 - i.e. 1% of flow on 3900 cfm system = 39 cfm.
If 1300 ft² duct area = 3 cfm leakage / 100 ft²
300 ft² duct area = 13 cfm leakage / 100 ft²
- Test pressure requirements
 - Problem: Test pressure higher than duct design
 - i.e. testing system designed for 2 in H₂O operation at 10 in H₂O
- Need to consider
 - Surface area of ductwork
 - Type of ductwork (round, rectangular)
 - Static pressure

US Duct Leakage Testing Requirements - (SMACNA)

Duct Class	1/2-, 1-, 2-inwg	3-inwg	4-, 6-, 10-inwg
Seal Class	C	B	A
Sealing Applicable	Transverse Joints Only	Transverse Joints and Seams	Joints, Seams and All Wall Penetrations
Leakage Class (C_L) – CFM Leakage per 100 ft² @ 1 in H₂O			
Rectangular Metal	24	12	6
Round Metal	12	6	3

$$F = C_L * P^{0.65}$$

- F = Max Leakage (cfm/100 ft²)
- C_L = Leakage Class (from table above)
- P = Pressure (in H₂O)

Prior to Field Testing

TRUST. SCIENCE. INNOVATION.

© 2011, TSI Incorporated

Prior to Field Testing

1) Duct System Designer:

Include on Design/Contract Drawing:

- Specify Duct Pressure Classification

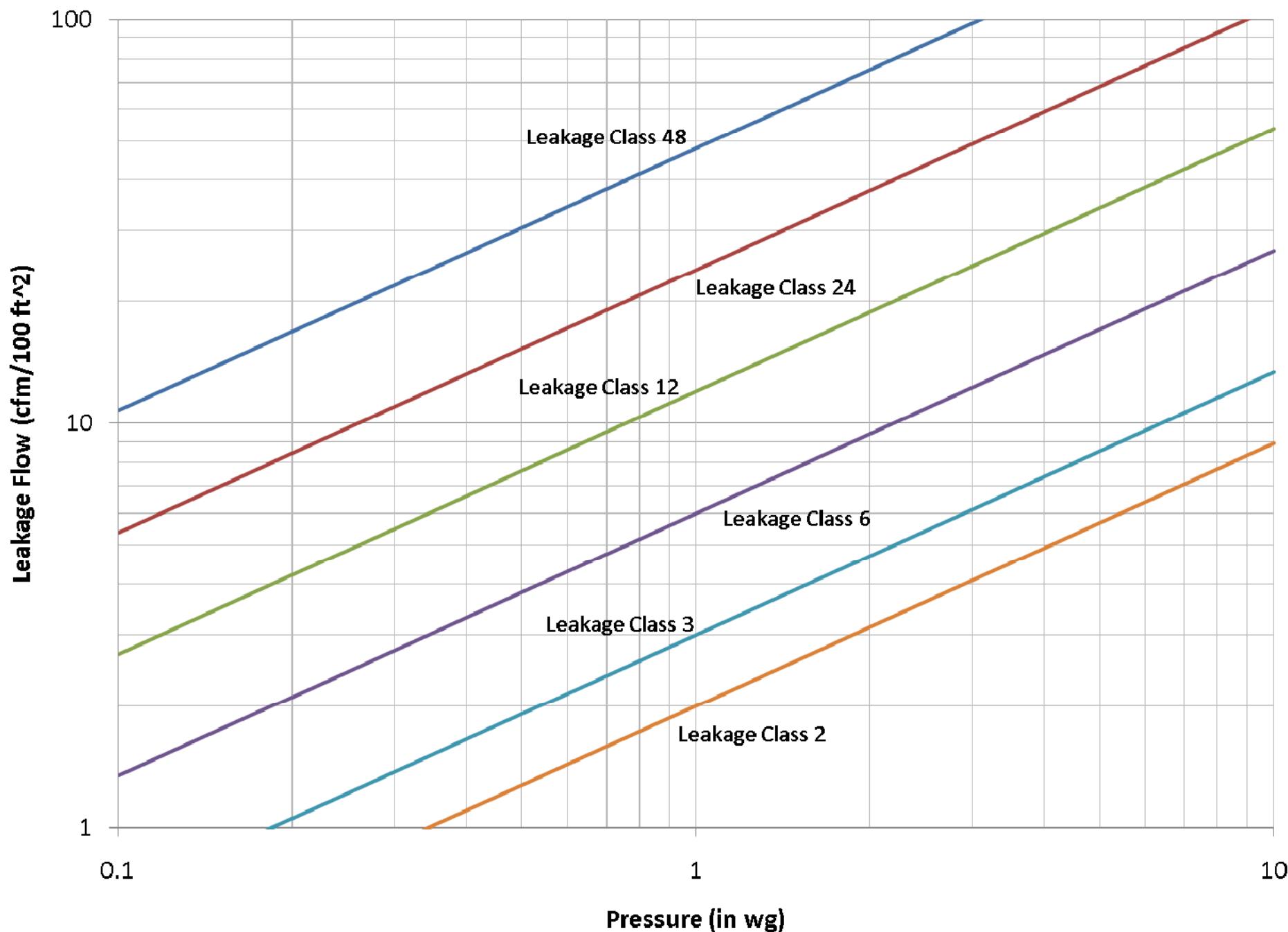
US Duct Leakage Testing Requirements - (SMACNA)

Duct Class	1/2-, 1-, 2-inwg	3-inwg	4-, 6-, 10-inwg
Seal Class	C	B	A
Sealing Applicable	Transverse Joints Only	Transverse Joints and Seams	Joints, Seams and All Wall Penetrations
Leakage Class (C_L) – CFM Leakage per 100 ft² @ 1 in H₂O			
Rectangular Metal	24	12	6
Round Metal	12	6	3

$$F = C_L * P^{0.65}$$

- F = Max Leakage (cfm/100 ft²)
- C_L = Leakage Class (from table above)
- P = Pressure (in H₂O)

Duct Leakage Equation


$$F = C_L P \cdot 65$$

Where
duct

$$F = \text{Leakage [CFM]} / 100 \text{ ft}^2$$

C_L = Duct Leakage Classification

P = Duct Static Pressure [“w.g.”]

Prior to Field Testing

1) Duct System Designer:

Include on Design/Contract Drawing:

- Test (or not) as installed? Depends on design intent/requirements
- If Test: Specify on Dwgs
 - Portion of ductwork, or whole system?
 - Positive Pressure? Negative?
 - Provide method details

Prior to Field Testing

Quote from *HVAC AIR DUCT LEAKAGE TEST MANUAL (SMACNA)*:

“WHERE NO SPECIFIC DUCT PRESSURE CLASS DESIGNATIONS ARE PROVIDED BY THE DESIGNER THE 1” WATER GAGE PRESSURE CLASS IS THE BASIS OF COMPLIANCE...

Prior to Field Testing

... EXCEPT WHEN THE DUCT IS VARIABLE VOLUME: ALL VARIABLE VOLUME DUCT UPSTREAM OF VAV BOXES HAS A 2" W.G. BASIS OF COMPLIANCE WHEN THE DESIGNER DOES NOT GIVE A PRESSURE CLASS."

– from SMACNA *HVAC AIR DUCT LEAKAGE TEST MANUAL*, 1985

Prior to Field Testing

2) Testing Agency: Prepare paperwork

- Test plan
- Test report form

Prior to Field Testing

3) Testing Agency: Prepare the site

- Plan/Coordinate with construction/installation contractors
- Blanking materials
- Equipment
 - Select according to Test Requirements
 - Consider
 - System Flowrate
 - Leakage Classification
 - Flow Capacity of Test System

Prior to Field Testing

- Equipment Details:
 - Must use instruments that have been calibrated within the past 12 months
 - Calibration certificates traceable to NIST
 - Consider Test System capabilities:
 - Ability to Log data and download with Time/Date stamp vs. using liquid-inclined and U-tube manometers

Prior to Field Testing

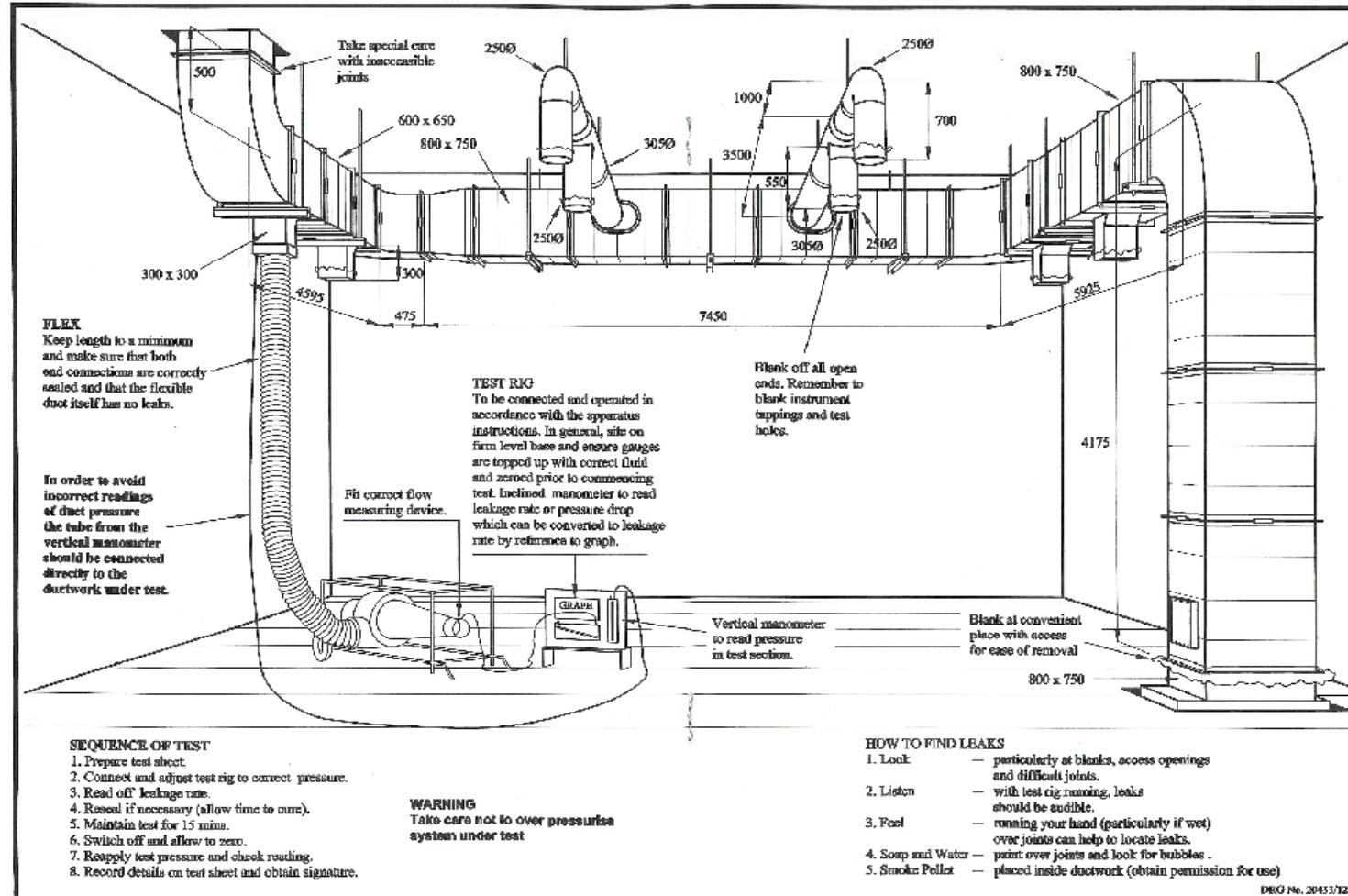
- Contingency planning
(Designer: Put plans in contract drawing/specs)
 - If duct leak test FAILS – then what?

REMEDIATE!

Prior to Field Testing

- REMEDIATION Plan
 - Seal the leaks
 - Wait for seals to cure
 - Re-test
 - Re-test failed section only?
 - Does section failure trigger need to test more sections?

SPECIFY!


Test Procedure

- 1) Select Duct Section for Testing
- 2) Measure and Calculate Duct Surface Area
- 3) Seal All Openings (except one)

Fig. 1 Hints on Ductwork Leakage Testing

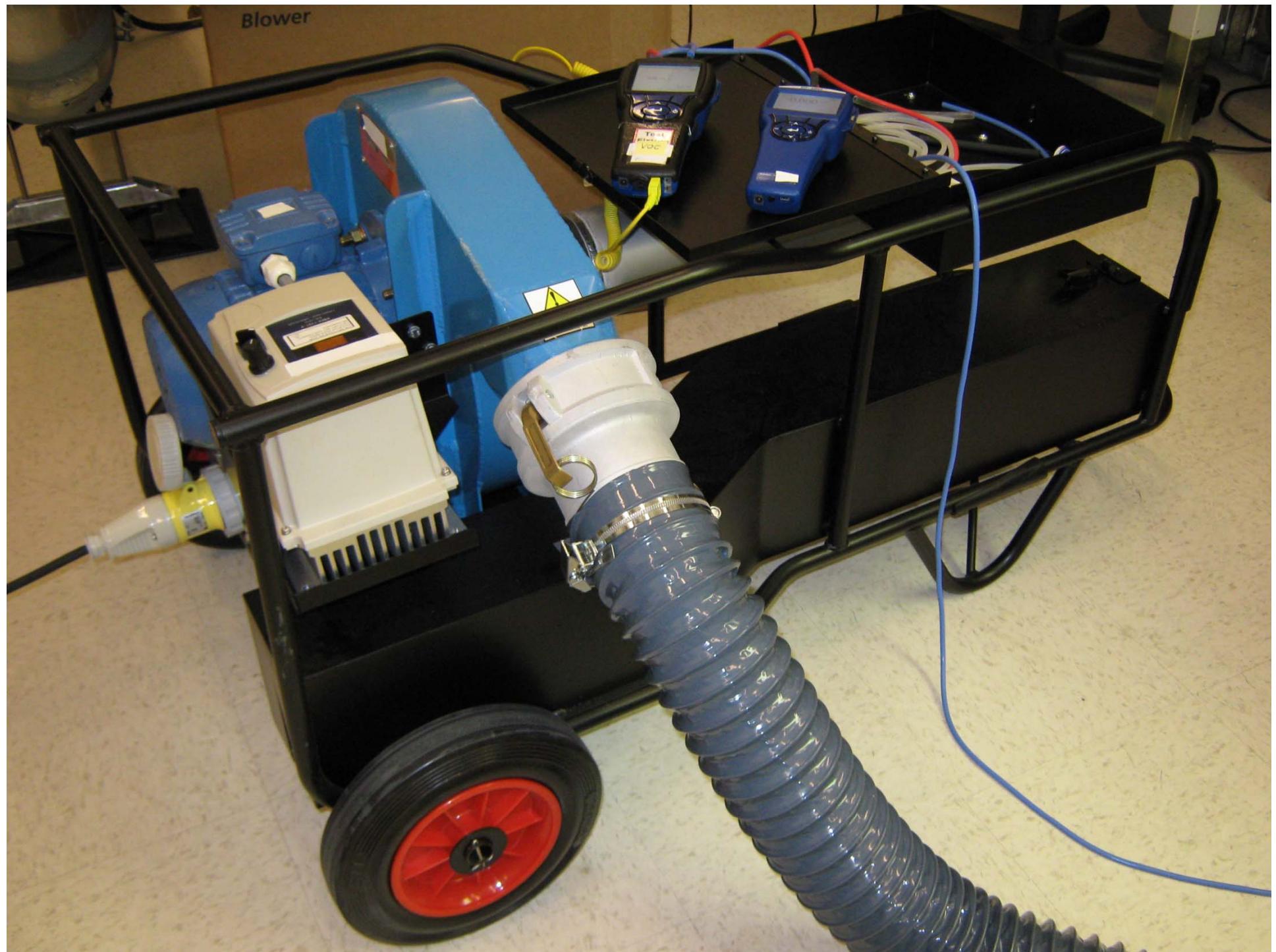
The dimensions on this ductwork are used in an example on page 7

Test Apparatus

Duct Leakage Test System consists of:

- 1) Blower with speed control (VFD) to generate range of pressure/flow
- 2) Flow measuring devices
 - Flow Grid/Flow Station (High Flow)
 - Orifice Plate (Low Flow)
- 3) Pressure instruments (manometers)
- 4) Accessories to attach to duct system
- 5) Optional item (smoke generator)

Test System: Considerations



- Maximize: Flow Range
 - Limits duct section size/Leakage Rate
- Maximize: Pressure Range
 - High Pressure Blower to cover duct classes
 - $\frac{1}{2}$ " to 10" w.g.
- Maximize: Instrument Measurement Accuracy
 - Flow: 2.5% of reading
 - Pressure: 1% of reading

Test System Considerations

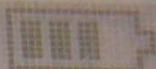
- Instrumentation:
 - Traceable to National Standards (NIST)
 - Logging capability – SIMPLIFY!
 - Time/Date Stamp on each data set
 - Calculates Flows
 - Calculates Leakage rate based on duct ft^2 input
 - Indicates PASS/FAIL status according to selectable defined leakage classifications
 - Report generation and validation

28.71 in.Hg bp

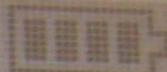
Test 009

NEXT TEST

MENU

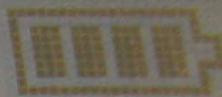

PRINT

MENU


Zero Press
Display Setup
Settings
Flow Setup
VOC Setup
Actual/Std Setup
Data Logging
Zero CO
WIFI DEVICES
Calibration
Discover Printer

APPLICATIONS

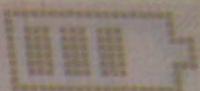
Draft Rate
Heatflow
Turbulence
% Outside Air
and more...


LEAKAGE TEST

Surface Grid 1123 ft²
Static Press 1.00 in.H2O
Flow Device Flow Grid
Tightness Class B
Test Length
Run Test

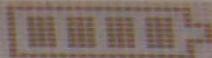
0.993

in.H₂O



Test 002

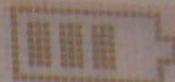
NEXT TEST


MENU

LEAKAGE TEST

Surface Area	1123 ft ²
Depth, Water	0.993 in. H ₂ O
Flow Device	Flow Grid
Lightness Class	B
Net Length	
Run Test	

TEST LENGTH


05 : 00
Min:Sec

LEADERTEC31

Surface Area	1123 ft ²
Static Press.	0.993 in.H2O
Flow Device	Flow Grid
Lightness Class	B
Test Length	
Run Test	


LEAKAGE TEST

Leak Factor	0.08005 CFM/ft ²
Leak Limit	0.0637 CFM/ft ²
Leak Rate	09.80 CFM
Status	High
Flow Device	Flow Grid
Baro Press	28.65 in.Hg
Temperature	67.8°F
Time	0:06
Standard	Test 009
	Sample 0

STOP

LEAKAGE TEST

Leak Factor	0.08099 CFM/ft ²
Leak Limit	0.0637 CFM/ft ²
Leak Rate	90.95 CFM
Status	Fail
Flow Device	Flow Grid
Baro Press	28.65 in.Hg
Temperature	67.8°F
Time	0:00
Standard	Test 009
	Sample
Test Done	0

000000

000000

LEAKAGE TEST

0000>

Leak Factor	0.06218 CFM/ft ²
Leak Limit	0.0637 CFM/ft ²
Leak Rate	69.83 CFM
Status	Pass
Flow Device	Flow Grid
Baro Press	28.70 in.Hg
Temperature	63.9 °F
Time	0:00
Standard	Test 009
Test Done	Sample 0
	SAVE PRINT

Summary

- Leaky ductwork is costly
- There are Standards and Test Procedures
- Designer: Be Specific with specs and instructions
- Choose the right Test Equipment

Contacts

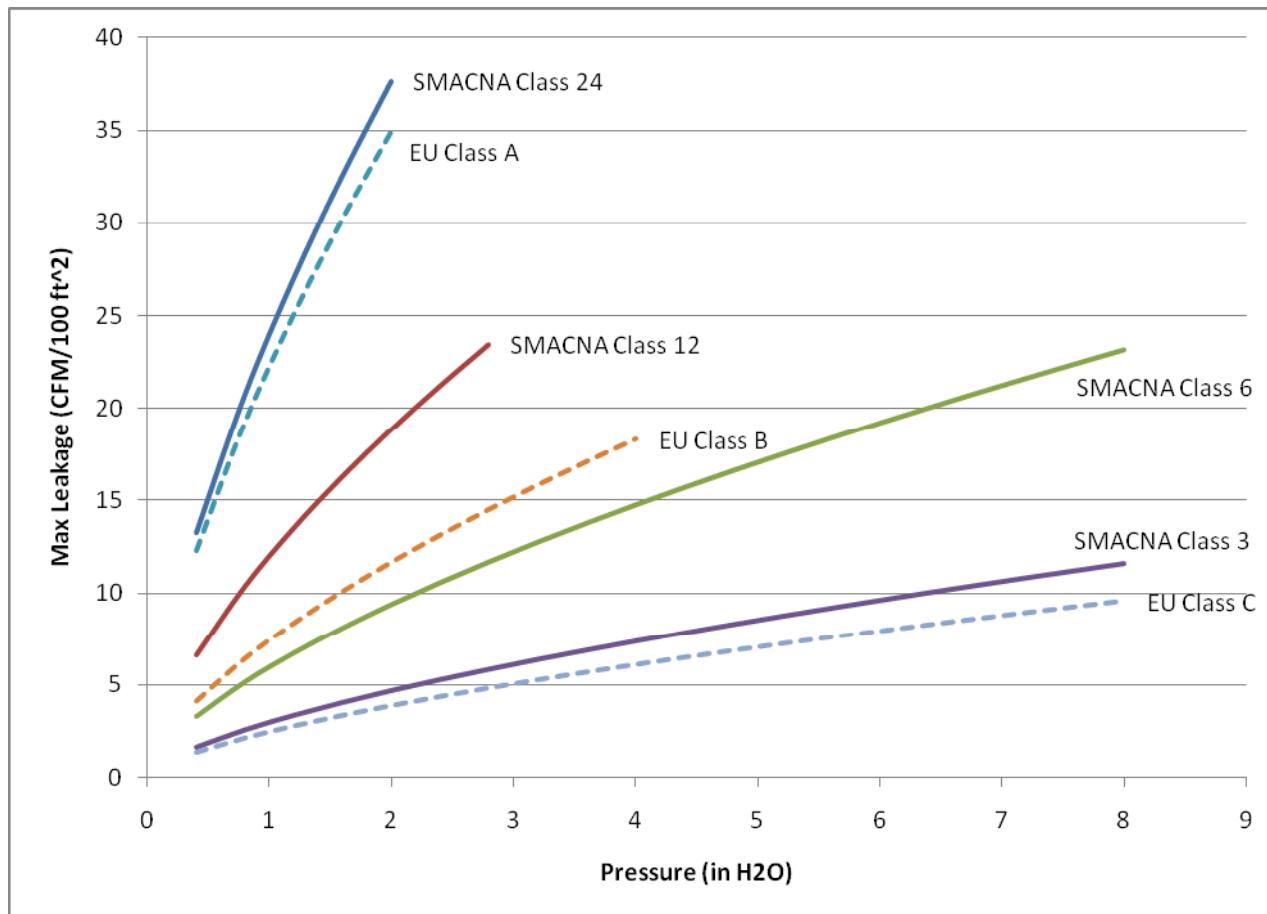
- Ken Helpers, TSI Inc.
- Ken.helpers@tsi.com
- 502-897-0945
- Siva Iyer, TSI Inc.
- siva.iyer@tsi.com
- 651-765-3721

Appendix

European Duct Leakage Requirements - Round Ducts

Duct Pressure Class	Static Pressure Limit		Maximum Air Velocity m/s	Air leakage limits l/s/m ²
	Positive Pa	Negative Pa		
Low pressure – Class A	500	500	10	0.027*p_t^{0.65}
Medium pressure – Class B	1000	750	20	0.009*p_t^{0.65}
High pressure – Class C	2000	750	40	0.003*p_t^{0.65}

- P_t = test pressure


European Duct Leakage Requirements - Rectangular Ducts

Air Tightness Class	Static Pressure Limit (p_s) Pa				Air Leakage Limit l/s/m ²	
	Negative	Positive at pressure class				
		1	2	3		
Low pressure – Class A	500	400	NA	NA	$0.027 * p_t^{0.65}$	
Medium pressure – Class B	750	400	1000	2000	$0.009 * p_t^{0.65}$	
High pressure – Class C	750	400	1000	2000	$0.003 * p_t^{0.65}$	

- P_t = test pressure

Comparison of SMACNA & EU Leakage Requirements

Comparison

	EU Standards	SMACNA Standard
Standard / Actual Conversions	Required	Suggested if: <ul style="list-style-type: none">• Air Temp <40°F or >100°F• Elevation >1500 feet• Duct static <-20 in H₂O or >+20 in H₂O

Comparison

	EU Standards	SMACNA Standard
Report Requirements	<p>Specified in Standards</p> <ul style="list-style-type: none">• Site details<ul style="list-style-type: none">• Date• Location• Test equipment• Personnel & witnesses• Ductwork installer & manufacturer• Duct design operating pressure• Required Air Tightness Class	<p>Defers to project specifications. Suggests:</p> <ul style="list-style-type: none">• Site Details<ul style="list-style-type: none">• Date• Location• Personnel & witnesses• Duct section tested

Comparison

	EU Standards	SMACNA Standard
Report Requirements	<p>Specified in Standards</p> <ul style="list-style-type: none">• Measurements<ul style="list-style-type: none">• Duct surface area• Test pressure• Leakage rate• Pressurizing time• Calculated<ul style="list-style-type: none">• Leakage factor• Air Leakage Limit• Pass/fail result	<p>Defers to project specifications. Suggests:</p> <ul style="list-style-type: none">• Measurements<ul style="list-style-type: none">• Duct surface area• Test pressure• Leakage rate• Calculated<ul style="list-style-type: none">• Max Air Leakage allowed• Pass/fail result