2014 NEBB Annual Conference

Delivering Building Performance and Energy Efficiency

Fort Lauderdale, FL
April 3-5, 2014 – Hyatt Regency Pier 66
Measurements to Achieve Building Performance Objectives
Agenda

+ **Building Performance**
 - What is it
 - Goals
 - Challenges

+ **NEBB Firms**
 - What do you do
 - Goals
 - Challenges

+ **Common Measurement Applications**
 - Duct traverse “Tips and Tricks”
 - Outlet flow
Building Performance

+ What is it?

• Comprehensive approach
 - Focus on building as a whole
 - Not the sum of various components

• Regarding HVAC system balancing:
 - Meet design intent
 + Mechanical schedule
 + Sequence of operations
 - Ensure comfort and energy efficiency
 - Identify and correct system deficiencies
Building Performance

+ Who defines it and sets goals?

• Building owner and design team address...
 - Planning
 - Design
 - Financing
 - Construction
 - Installation
 - TAB
 - Commissioning
 - Operations and maintenance
Building Performance

+ What prevents goals from being achieved?

• Planning
 - Not specifying performance expectations clearly

• Design
 - If performance expectations are not specified, designers:
 • Cannot document intent
 • Wrong design and equipment selection
 • Cannot refer to clear documentation of project goals
 o Used to optimize their design decisions

• Installation
 - Not following plans
 - Undersize/oversize piping and ducts
 - Bad mechanical contractor
Building Performance

+ What prevents goals from being achieved?

• TAB
 - Non-NEBB firm

• Commissioning
 - Difficult to document performance testing based on the above
 - Can only reference drawings and schedules
 - Lack of commissioning

• Other
 - Poor communication between all parties involved
 - Parties not involved in the process in the early stages
Building Performance: NEBB Firms

Where do NEBB firms fit in?

- **Testing, Adjusting and Balancing (TAB)**
- Building Enclosure Testing (BET)
- Building Systems Commissioning (BSC)
- Cleanroom Performance Testing (CPT)
- Fume Hood Testing (FHT)
- Retro-Commissioning (RCx)
- Sound & Vibration Measurement (S&V)
Building Performance: NEBB Firms

+ What do NEBB certified firms do?
 • Bid jobs
 • Provide TAB services
 • Mainly commercial applications
 - General industry
 - Critical environments
 • Use tools and equipment
 - Adjust and balance per mechanical schedules
 - Ensure sequence of operations
 • In business to make $$$
What is the goal of a NEBB firm when on a job?

- Meet or exceed the objectives
- Meet mechanical schedule requirements
- Get done in the time allotted or bid timeframe
- No call backs
- *Get the work done - get paid*$ - move on to the next job
Building Performance: NEBB Firms

+ How do you perform TAB?

- Qualitative testing:
 - “Feels” hot-cold-humid-dry-drafty-stuffy-stagnant
 - Make adjustments to make it “feel” right

- Quantitative testing:
 - Use building plans and mechanical schedule
 - Measure temp and RH
 - Measure supply and return flows
 - Measure room delta P
 - Measure %OA
What challenges do you face?

- HVAC systems rely on control systems
 - BAS
 + Communications (LON, BACnet, N2, ...)
 + Installed sensors

- Familiarity with various control systems and providers in the market
 - To interface with them
 - Learn system
 + Review documentation and instruction
 + Dedicated time required

- Make changes
 - May require special software, licensing and communications cable

- Test and verify affects of change
Common Measurement Applications

- Increase productivity
- Improve efficiency
- Maintain performance
Duct Traverse: Tips and Tricks

1. Traditional

2. Fan laws

3. Center point measurement
 - Calculated CF
 - 0.9 CF
Duct Traverse: Tips and Tricks

1. Traditional
 • Log T
 • Equal area
 + Accurate
 • Takes some time
 + Used to generate correction factor
 • Characterizing a hood to an outlet
 • Back pressure compensation
 + Location impacts measurement
 + Products used
 • Micromanometer with pitot probe
 - Ideal for high temperature airstreams
 • Thermoanemometers
 - Measure air velocity, temperature and humidity
 - Calculate air flow, wet bulb and dewpoint temperature
Duct Traverse:
Tips and Tricks

2. Using Fan Laws

+ When performing a duct traverse
 - Measure the static pressure

+ If system changes, rather than redoing the entire traverse again
 - Take a SP measurement

 - Use fan laws and input CFM1, SP1 and SP2 to calculate CFM2
Duct Traverse: Tips and Tricks

2. Using Fan Laws

+ Example: 12” x 12” Duct
 • Initial traverse (CFM1) = 335 cfm
 • Initial SP (SP1) = 0.02814

 • Duct flow changes....
 • SP2 now = 0.03618

\[
CFM2 = \sqrt{\frac{SP2}{SP1}} \times CFM1
\]

\[
CFM2 = \sqrt{\frac{0.03618}{0.02814}} \times 335
\]

\[
CFM2 = 380
\]
Duct Traverse: Tips and Tricks

3. Center point measurement & calculated CF
 • Measure in center of duct
 • Compare to duct traverse AVG
 - CALC CF = TRV1 AVG/TRV1 CTR

 + TRV1 = 335 CFM
 + CTR1 = 367 CFM
 + CALC CF = 0.913
Duct Traverse: Tips and Tricks

3. Center point measurement and 0.9 CF

+ For a *quick look of flow performance*
 - Place probe in center of duct
 - Take flow measurement
 - Apply 0.9 correction factor

• NOTE:
 - If conditions are very good an accuracy of ±5 or ±10 percent may be obtained
 - This method should only be used where small duct size or other conditions do not permit a full traverse
Duct Traverse: Tips and Tricks Summary

<table>
<thead>
<tr>
<th>Standard</th>
<th>Pitot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.0 in X 12.0 in</td>
</tr>
<tr>
<td>TRV1</td>
<td>335 CFM</td>
</tr>
<tr>
<td>SP1</td>
<td>0.02814 "H2O</td>
</tr>
<tr>
<td>CTR1</td>
<td>367 CFM</td>
</tr>
<tr>
<td>CTR1</td>
<td>330 CFM</td>
</tr>
<tr>
<td>0.9 CF</td>
<td></td>
</tr>
<tr>
<td>SP2</td>
<td>0.03618 "H2O</td>
</tr>
<tr>
<td>Fan law for CFM2</td>
<td>380 CFM</td>
</tr>
<tr>
<td>TRV2</td>
<td>381 CFM</td>
</tr>
<tr>
<td>CTR2</td>
<td>412 CFM</td>
</tr>
<tr>
<td>CTR2</td>
<td>370 CFM</td>
</tr>
<tr>
<td>0.9 CF</td>
<td></td>
</tr>
<tr>
<td>CTR2 * 0.913 CALC CF</td>
<td>376 CFM</td>
</tr>
</tbody>
</table>
Outlet Measurements
Without Capture Hoods...

+ Pitot traverse

+ Diffuser probe
 • Multi-point
 • Requires diffuser manufacturer-specific Kfactors
 • Hand calculations
 • 2-man job
Outlet Measurements
Without Capture Hoods...

+ Diffuser with pressure taps
 - Kf supplied by manufacturer
 - Adjust flow with “strings”

+ Common in EU
 - Nordics
Outlet Measurements
Early Capture Hoods...

+ Analog hoods

+ “Multi-man” job!!
Outlet Measurements
Current Capture Hoods...

+ Multi-use product designed for TAB
 - Back pressure compensation
 - Data logging and download
 - Report generation
 - Auto density correction
 - Detachable micromanometer
 - Optional probes
 - Bluetooth communications
 - LogDat™ Mobile

+ Enhanced productivity and efficiency
Outlet Measurements

Swirl or Twist Diffusers

+ Have you encountered these in the US???
 • Common in EU

+ Turbulent air pattern exits swirl diffuser

+ Creates uniform temperature gradients
 • Better mixing with room air

+ Inaccuracy caused by the non-uniform air patterns
Outlet Measurements
Swirl or Twist Diffusers

+ Swirl-X Flow Conditioner
+ Why use it?
 • Hood measurements can be 55% greater than true flow
 • Inaccuracy caused by the non-uniform air patterns
Outlet Measurements
Swirl or Twist Diffusers

What is it?
• Consists of two light weight partitions that are connected together
• Fits on top of the plastic base
• Straightens turbulent airflow
Swirl X Flow Conditioner

+ Performance testing

EBT731 Performance Data
(Swirl Diffuser on 200mm Dia. Duct)

EBT731 Performance Data
(Swirl Diffuser on 300mm Dia. Duct)
Swirl X Flow Conditioner

Swirl X Performance Video

Capture Hood Swirl-X Flow Conditioner — Installation and Benefits In Use
Summary?

+ Time is money

+ Many unforeseen challenges arise on the job
 • Often affects time frame for completion

+ Using today’s product offerings
 • Help make up time
 • Ensure optimum performance
 • Increase efficiency